Comments Off on We Care Solar Club’s Solar Suitcases
Through their solar suitcases, the We Care Solar Club of Elk Grove, California is reaching out to the developing world.
Hal Aronson and his wife, Dr. Laura Stachel launched the solar suitcase program through their charity Women’s Emergency Communication and Reliable Energy. When high school engineering teacher, Tim McDougal attended a “solar schoolhouse” given by Aronson, he was convinced the suitcases would be a perfect engineering project for his class.
In turn, the students, hoping to make a difference, have taken on fund raising in addition to suitcase construction. They have raised money for and built two suitcases so far. The first will be sent to the Tarahumara Indians of Mexico next week.
Teacher, McDougal hopes to see the program in all Elk Grove schools next year and Dr. Stachel said a group of students in Colorado is also planning to join the project.
Comments Off on UCSD Students Help City Secure Solar Bonds
Four University of California San Diego mechanical engineering students created an analytical tool making it easier for both UC San Diego and the San Diego Unified School District to determine cost, energy output and payback time when applying for Clean Renewable Energy Bonds (CREBs).
The San Diego Unified School District ultimately secured the most CREB allocations of any one agency in the nation totaling $74 million for 111 projects. UC San Diego will receive $15 million for 15 renewable energy projects.
Jan Kleissl, the students’ advisor, heralds the project’s success as a much needed step in making San Diego the solar capital of the nation.
Comments Off on Ford in Sync with Milennial Engineers
In what’s being called “a developmental shift for Ford,” the motor company has given their Millennial audience a challenge. More specifically, Ford’s challenging computer and electrical engineering students from the University of Michigan to grow it’s in-car connectivity and communications-and-entertainment system, Sync.
Ford hopes that the same twenty-something audience they are reaching out to via social networking sites like Facebook and Twitter, will bring cloud computing and social networking “to the dashboard.”
Comments Off on Aerospace Engineering Students Inspired by Spiraling Seeds
As read in ScienceDaily :
Maple tree seeds (or samara fruit) and the spiraling pattern in which they glide to the ground have delighted children for ages and perplexed engineers for decades. Now aerospace engineering graduate students at the University of Maryland’s Clark School of Engineering have learned how to apply the seeds’ unique design to devices that can hover and perform surveillance in defense and emergency situations.
That’s right: concrete used as the building material for boats. It all happened in June when the American Society of Civil Engineers hosted its 22nd Annual National Concrete Canoe Competition. Though rain, thunder, and lightening were present, the competition went on at Lake Nicol in Tuscaloosa, Alabama. Twenty-two top engineering colleges and universities entered the event, but the University of California, Berkeley pulled off the win.
The competition is for civil engineering students and provides them with a real-world application of the engineering principles they learn in the classroom. The competition also builds teamwork and project management skills and challenges the students’ knowledge, creativity, and stamina. Finally, the star of the show, the concrete itself, is proven as a useful and versatile building material.
In order to go to the competition, teams must qualify in one of the 18 conference competitions held around the country. Qualifying teams gain academic scholarships totaling $9,000. The winners of the national competitions are holders of the America’s Cup of Civil Engineering. This year, the competition changed a bit when organizers told teams they could only build hulls to the specifications and dimensions in the rule book. Working within limitations challenged students to think creatively on ways they could gain an advantage over other schools.
In their fifth win in the competition’s 22-year history, UC Berkeley took home the cup for the Bear Area, a 230-pound, 20-foot-long canoe. It was Berkeley’s first championship since 1992. The canoes that came the closest to overtaking the Bear Area were built by École de Technologie Supérieure in Montréal, Canada, and California Polytechnic State University in San Luis Obispo. ETS’s Vintage, weighing in at 190 pounds and 20 feet in length, came in second place. Following in third was Cal Poly’s 246-pound, 20-foot-long canoe, also christened the Vintage.
Photo: UC Berkeley’s entry in ASCE’s 21st Annual National Concrete Canoe Competition, Vocal, Photographer: Paul A. Hernandez
Recently, Eric Giler, CEO of WiTricity Corp., revealed the technology his company is developing that will make the use of power cables and cords virtually nonexistent. Or so he hopes.
In July, Giler presented at the TEDGlobal conference in Oxford, England. He showed off an Apple iPhone and Google G1 phone that were able to charge wirelessly, as well as a commercially available television that operated sans power cables. Imagine it: a world where wires aren’t getting tangled at your feet or ugly cords aren’t draped across rooms. It’s possible, and Giler believes it can be used for technology ranging from phones to electric cars. You could drive your car into the garage and it would automatically start charging!
The technology is based on work by physicist Marin Soljačić at the Massachusetts Institute of Technology and uses resonance to accomplish its goals. When two objects have the same magnetic resonance, they can exchange energy through their fields, which can then be turned into electrical power.
To accomplish energy transfer, the company uses coils that have the same resonant frequency. One coil is embedded in the wall/ceiling/floor and plugged into an electric source. The other coil is built into your device, whether it be a laptop, phone, television, etc. When the device is within range of the main coil, energy would begin to flow between the two devices automatically, and a voltage would begin to build up in the device, charging it up, no plugs or cords needed!
The technology is perfectly safe because it uses magnetic fields. Depending on the device, anywhere from milliwatts to kilowatts of power can be transferred between coils. And, it can be transferred over a range of centimeters to several meters. The energy is also transferable through most building materials (yes, it will go through the wall or ceiling) and can bend around metal objects that would otherwise block the magnetic waves.
While the idea of wireless transfer of energy has been around for a while (Nikola Tesla, an electrical and mechanical engineer who lived from 1856 to 1943, hypothesized we would one day be working electronics wirelessly), this demonstration of practical use is a huge step in the process, and this is the first time a company has unveiled plans to commercialize the technology. One day in the near future (WiTricity is saying possibly within a year and a half), we won’t have to fumble around with our power cords or desperately search for our phone chargers!
To learn more about the science behind WiTricity’s wireless powering, visit their website at www.witricity.com.